Constructing single-atom catalysts (SACs) using organic porous framework materials as supports presents a promising approach for developing highly efficient photocatalysts for hydrogen evolution. However, the fabrication of SACs that are both highly stable and active poses a significant challenge, particularly in the precise anchoring of metal single atoms. In this study, we utilized 1,3,6,8-tetra (p-methyl benzoate) pyrene as a ligand to synthesize pyrene-based hydrogen-bonded organic frameworks (denoted as PFC-1) through a self-assembly approach. Subsequently, a liquid-phase photoreduction process was employed to deposit noble metal platinum (Pt) onto PFC-1, resulting in the fabrication of SACs (PFC-1@Pt). Characterization results confirmed that Pt existed in a monatomic state, anchored through PtC and PtO coordination bonds with PFC-1. Serving as electron capture and separation centers, the Pt single atoms effectively suppressed electron-hole recombination, thereby prolonging carrier lifetimes. Consequently, the PFC-1@Pt SAC exhibited efficient hydrogen evolution performance with a rate of 2202.5 μmol g−1 h−1 and maintained photocatalytic activity for over 40 h. Our findings provide a systematic approach for developing efficient and stable SACs based on HOFs, expanding the potential applications of HOF materials in photocatalysis.
Read full abstract