Abstract

Micromorphology engineering and co-catalyst construction are considered as feasible approaches to boost the photocatalytic hydrogen evolution performance. Herein, we combined two approaches to construct a new photocatalyst with titanium dioxide (TiO2) hierarchical microspheres (HMSs) as support and atomically dispersed platinum (Pt) species as co-catalyst (donated as TiO2 HMSs@xPt). The as-prepared TiO2 HMSs@xPt photocatalysts exhibited combined advantages including adequate light harvesting, improved charge-carrier separation and transport, abundant active sites, and reduced Pt consumption, which are favorable for photocatalytic hydrogen evolution. Specifically, the optimized TiO2 HMSs@0.36Pt exhibits a remarkable photocatalytic hydrogen evolution rate of 11.7 mmol g-1h−1 under simulated AM 1.5G solar light irradiation, which is 50 times and 4.8 times higher than those of pure TiO2 HMSs and traditional anatase TiO2 nanoparticles (NPs) with the same Pt loading, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call