Photobacterium damselae subsp. piscicida, the causative agent of fish pasteurellosis, produces a siderophore which is distinct from that produced by P. damselae subsp. damselae. Using suppression subtractive hybridization, a subsp. piscicida-specific DNA region of 35 kb was identified in strain DI21, and 11 genes were defined: dahP, araC1, araC2, frpA, irp8, irp2, irp1, irp3, irp4, irp9 and irp5. The sequence of the predicted proteins encoded by these genes showed significant similarity with the proteins responsible for the synthesis and transport of the siderophore yersiniabactin, encoded within the Yersinia high-pathogenicity island (HPI). Southern hybridization demonstrated that this gene cluster is exclusive to some European subsp. piscicida isolates. Database searches revealed that a similar gene cluster is present in Photobacterium profundum SS9 and Vibrio cholerae RC385. An irp1 gene (encoding a putative non-ribosomal peptide synthetase) insertional mutant (CS31) was impaired for growth under iron-limiting conditions and unable to produce siderophores, and showed an approximately 100-fold decrease in degree of virulence for fish. The subsp. piscicida DI21 strain, but not CS31, promoted the growth of a Yersinia enterocolitica irp1 mutant. Furthermore, a yersiniabactin-producing Y. enterocolitica strain as well as purified yersiniabactin were able to cross-feed strains DI21 and CS31, suggesting that the subsp. piscicida siderophore might be functionally and structurally related to yersiniabactin. The differential occurrence among P. damselae strains, and the low sequence similarity to siderophore synthesis genes described in other members of the Vibrionaceae, suggest that this genetic system might have been acquired by horizontal transfer in P. damselae subsp. piscicida, and might have a common evolutionary origin with the Yersinia HPI.