The swift recombination of photo-induced electrons and holes is a major obstacle to the catalytic efficiency of TiO2 nanomaterials, but the incorporation of graphene oxide and out-field modification is considered a potent method to augment photocatalytic properties. In this work, a series of GO/TiO2 photocatalysts were successfully optimized by a microwave field. As determined by transient photocurrent response and electrochemical impedance spectroscopy (EIS) tests, microwave irradiation at 600 W for 5 min on the GO/TiO2 photocatalyst promoted interfacial charge transfer and suppressed charge recombination. Through systematic characterizations, GT(600/5) exhibited the highest photooxidation rate (81.5%, 60 min) of Rhodamine B under visible light compared to other homologous samples, owing to the minimum grain size (16.914 nm), enlarged specific surface area (151 m2/g), maximum light response wavelength (510 nm), narrowest bandgap width (2.90 eV), and stronger oxidized hydroxyl radicals (•OH). Given the environmental friendliness, greenness, and sustainability, this study could present an efficient and economical strategy for synthesizing and fine-tuning photocatalysts.
Read full abstract