Enzyme I and HPr, the general proteins of the phosphoenolpyruvate-sugar phosphotransferase system, play a pivotal role in the control of sugar utilization in gram-negative and gram-positive bacteria. To determine whether growth conditions could modify the rate of biosynthesis of these proteins in Streptococcus mutans, we first purified to homogeneity enzyme I and HPr from S. mutans ATCC 27352. Using specific antibodies obtained against these proteins, we determined by rocket electrophoresis the intracellular levels of enzyme I and HPr in cells of S. mutans 27352 grown under various batch culture conditions and in a number of glucose-grown cells of other strains of S. mutans. HPr was purified by the procedure reported by Gauthier et al. (L. Gauthier, D. Mayrand, and C. Vadeboncoeur, J. Bacteriol. 160:755-763, 1984) and displayed a single band with a molecular weight of 6,650 when analyzed by sodium dodecyl sulfate-urea gel electrophoresis. Enzyme I was purified by DEAE-cellulose chromatography, affinity chromatography on an anti-Streptococcus salivarius column, and preparative electrophoresis. The protein migrated as a single band in native and denaturating gel electrophoresis. The subunit molecular weight of enzyme I determined by electrophoresis under denaturating conditions was 68,000. In gel filtration chromatography at 4 degrees C, the enzyme migrated as a 135,000- to 160,000-molecular-weight species, suggesting that enzyme I is a dimer. In double immunodiffusion experiments, antibodies against HPr reacted with several oral streptococci, Streptococcus lactis, Streptococcus faecium, and Lactobacillus casei, but not with Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Antibodies against enzyme I of S. mutans 27352 cross-reacted with enzyme I from all the other oral streptococci tested. No cross-reaction was observed with other gram-positive and gram-negative bacteria. The levels of enzyme I and HPr determined by rocket electrophoresis in S. mutans 27352 varied at the most by twofold, depending on the growth conditions. Glucose-grown cells of other S. mutans strains contained levels of enzyme I and HPr which were similar to those found in S. mutans 27352.
Read full abstract