The insulin receptor is synthesized as a single chain, 190 kDa glycoprotein precursor, which undergoes proteolytic cleavage, carbohydrate processing, and fatty acylation to generate the mature receptor on the plasma membrane. The relationship of these post-translational modifications to the acquisition of receptor function, i.e. ligand binding and phosphokinase activity, is not fully understood. Therefore, the 190 kDa proreceptor and mature receptor kinase activities were separately examined in vitro, and their phosphorylation properties compared. The solubilized receptor precursor from IM-9 lymphocytes was purified by sequential lectin chromatography and, following site specific anti-receptor antibody immunoprecipitation, phosphokinase studies performed. The isolated proreceptor was activated by insulin and phosphorylated exogenous substrate α-casein, as similarly observed for the mature receptor. Structurally, the phosphorylated proreceptor was identified as a 360 kDa homodimer under non-reducing condition.