In previous studies, we observed that when rats were chronically treated with haloperidol, there was a significant increase of calmodulin activity in their striatal membranes. Calmodulin is knwon to modulate calcium-dependent protein phosphorylation in neural membranes. In the present study, we found that the total 32P-incorporation in the striatal proteins from chronic haloperidol-treated rats was significantly increased in comparison to saline-treated rats. A majority of the phosphorylation was attributed to the calcium-mediated activity, since it could be blocked by a calcium chelating agent (EGTA). By using EGTA to inhibit phosphorylation, the results indicated that the haloperidol-treated rats had approximately 3.5-fold greater Ca ++-dependent protein kinase activity than the saline-treated rats. Exogenous calcium alone was insufficient to stimulate phosphorylation in the haloperidol-treated rats to the same magnitude as in the saline-treated rats. Calmodulin may be required. 32P-incorporation of two striatal proteins at molecular weight 40 and 52 kilodaltons were markedly stimulated by calcium. Cyclic AMP-mediated phosphorylation seemed to take only a small part in the alteration of total phosphorylation. Therefore, the increase of calmodulin activity and calcium-dependent phosphorylation appears to play a major role in the drug-induced dopamine receptor supersensitivity in rat striatum.
Read full abstract