Quarrying causes severe degradation of soils and vegetation that can be recovered partially when the quarries are abandoned and re-colonised by plants. To understand the recovery of soil functionality and nutrient cycling, we studied the development of soil phosphorus pools during Scots pine (Pinus sylvestris) revegetation in a disused sand quarry in Northwestern Russia. Sites that had been developing for different times since abandonment were compared to the parent sand and an adjacent undisturbed forest. Phosphorus speciation in genetic horizons of soil profiles was determined by sequential fractionation and solution phosphorus-31 nuclear magnetic resonance spectroscopy. Rapid transformations in soil properties occurred in 40 years, with a marked decline in pH and an accumulation of organic matter. Phosphorus transformations were shaped by geochemical processes, with a rapid release of inorganic phosphorus from primary minerals and accumulation of organic phosphorus to concentrations exceeding those found in the undisturbed site. Adsorbed and/or precipitated phosphorus increased rapidly, despite few reactive mineral colloidal surfaces. Natural succession of Scots pine in post-mining landscapes promotes ecosystem restoration through the rapid re-establishment of the biogeochemical cycles of organic matter and phosphorus. This study provides an important example of biogeochemical phosphorus cycling during the initial stages of pedogenesis.
Read full abstract