The molecular order and hydration properties of the amine group in phosphatidylethanolamine and its N-methyl derivatives were studied by 2H-NMR at subzero temperatures. Three coexisting signals with 2H-NMR quadrupolar splittings of 146, 106, and 28.8 KHz were detected from the fully hydrated phosphatidylethanolamine/D2O at the lowest studied temperature of -120 degrees C by using short recycle time in the applied NMR pulse sequence. These signals have been assigned to originate from frozen D2O in the interbilayer space and the deuterated amine group, i.e., -ND, with and without threefold symmetric motions. Comparative 2H-NMR studies of phosphatidylethanolamine/D2O with different degrees of methylation over a temperature range between -40 and -120 degrees C lead to the following conclusions. First, the bond angle of -D attached to the nitrogen atom of the amine group may be determined by the 2H-NMR quadrupolar splittings, i.e., 106 and 28.8 KHz, of the two coexisting signals of the deuterated amine group and found to be 112.9 for the gel-state phosphatidylethanolamine. Second, assuming the applicability of the empirical equation for the hydrogen bond distance of N+D--O with deuteron quadrupole coupling constants and using the intermolecular hydrogen bond distance of the amine group determined in single crystals of phosphatidylethanolamine bilayers, the largest measured quadrupolar splitting (delta nu Q) of N-D in this study, i.e., 106 KHz, is close to the static value. This interpretation is also consistent with the fact that the delta nu Q value determined remains constant in the temperature range between -70 and -120 degrees C. Third, the molecular order parameter of the amine group, as calculated from the ratio of the libration-averaged and static delta nu Q value for the lipid with different degrees of methylation, suggests that the perturbation of the headgroup interaction is most significant for the final methylation step. Finally, measurement of the spectral intensity of isotropic unfrozen D2O signals in D2O/phospholipid dispersions at temperatures below the homogeneous nucleation temperature of ice formation for D2O, i.e., below -34 degrees C, suggests that the first methylation step perturbs the neighboring water most significantly. Assuming that the molecular order of the amine group and the amount of unfrozen water detected under the present experimental condition can be taken as a measure of the hydrogen-bonding ability and the extent of perturbation caused by the methyl group, respectively, the gradual methylation of the amine group perturbs the interactions of the N-methylated headgroups in a nonlinear fashion. The results provide a molecular explanation for the phase behavior of phospholipids with different degrees of methylation.