Abstract

We have examined the effects of three ring-size analogs of the cyclic beta-sheet antimicrobial peptide gramicidin S (GS) on the thermotropic phase behavior and permeability of phospholipid model membranes and on the growth of the cell wall-less Gram-positive bacteria Acholeplasma laidlawii B. These three analogs have ring sizes of 10 (GS10), 12 (GS12) or 14 (GS14) amino acids, respectively. Our high-sensitivity differential scanning calorimetric studies indicate that all three of these GS analogs perturb the gel/liquid-crystalline phase transition of zwitterionic phosphatidylcholine (PtdCho) vesicles to a greater extent than of zwitterionic phosphatidylethanolamine (PtdEtn) or of anionic phosphatidylglycerol (PtdGro) vesicles, in contrast to GS itself, which interacts more strongly with PtdGro than with PtdCho and PtdEtn bilayers. However, the relative potency of the perturbation of phospholipid phase behavior varies markedly between the three peptides, generally decreasing in the order GS14 > GS10 > GS12. Similarly, these three GS ring-size analogs also differ considerably in their ability to cause fluorescence dye leakage from phospholipid vesicles, with the potency of permeabilization also generally decreasing in the order GS14 > GS10 > GS12. Finally, these GS ring-size analogs also differentially inhibit the growth of A. laidlawii with growth inhibition also decreasing in the order GS14 > GS10 > GS12. These results indicate that the relative potencies of GS and its ring-size analogs in perturbing the organization and increasing the permeability of phospholipid bilayer model membranes, and of inhibiting the growth of A. laidlawii B cells, are at least qualitatively correlated, and provide further support for the hypothesis that the primary target of these antimicrobial peptides is the lipid bilayer of the bacterial membrane. The very high antimicrobial activity of GS14 against the cell wall-less bacteria A. laidlawii as compared to various conventional bacteria confirms our earlier suggestion that the avid binding of this peptide to the bacterial cell wall is primarily responsible for its reduced antimicrobial activity against such organisms. The relative magnitude of the effects of GS itself, and of the three ring-size GS analogs, on phospholipid bilayer organization and cell growth correlate relatively well with the effective hydrophobicities and amphiphilicities of these peptides but less well with their relative charge density, intrinsic hydrophobicities or conformational flexibilities. Nevertheless, all of these parameters, as well as others, may influence the antimicrobial potency and hemolytic activity of GS analogs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call