The complex mechanism called hemostasis evolved in living organisms to prevent blood loss when a blood vessel is damaged. In this process, two closely interconnected systems are distinguished: platelet-vascular and plasmatic hemostasis. Plasmatic hemostasis is a system of proteolytic reactions, in which blood plasma proteins called coagulation factors are involved. A key feature of this system is the localization of enzymatic reactions on the surface of phospholipid membranes, which increases their rate by up to 5 orders of magnitude. This review describes the basic mechanisms of coagulation factors binding to phospholipid membranes, pathways for complex assembly and activation reactions, and discusses the role of membranes in this process, their composition and sources. The binding of coagulation factors to procoagulant membranes leads not only to the acceleration of coagulation reactions, but also to their selective localization in restricted areas and protection from being washed away by the flow. The efficiency of coagulation reactions is regulated by the composition of the outer layer of the membrane, primarily through a special mechanism of mitochondria-dependent necrotic platelet death.
Read full abstract