Background: The platelet functionality of cold-stored platelets remains a subject of debate. Our aim was to investigate the effect of temperature on the hemostatic properties of stored platelets. Methods: Ten split pooled platelets stored at cold and at room temperature were evaluated in vitro on storage days 1, 5, 10, and 15 for metabolic, physiological, and vesiculation parameters, as well as their hemostatic profile using rotational thromboelastometry (ROTEM®). Results: The integrity profile was better preserved in the cold-stored platelets, as lower lactate dehydrogenase levels were documented (e.g., day 10: 261 ± 46 vs. 572 ± 220 U/L, 4 vs. 22 °C, p = 0.004). A time-dependent decrease in hemostatic capacity was evident regardless of the temperature, but the cold-stored units were linked to shorter clot initiation times and increased elasticity, strength, and firmness parameters, especially during extended storage (e.g., maximum clot firmness, INTEM day 15: 81 ± 2 vs. 19 ± 4 mm, 4 vs. 22 °C, p = 0.0008). Additionally, the aggregation of cold-stored platelets was superior after the addition of any agonist tested. Regarding vesiculation parameters, the extracellular vesicles of the units at 4 °C were characterized by a larger size from day 10 onwards, when they also presented higher procoagulant activity (e.g., phospholipid-dependent clotting time of day 15: 21.4 ± 2.3 vs. 25.0 ± 3.0 s, 4 vs. 22 °C, p = 0.016). Conclusion: Our results indicate that cold-stored platelets perform better than those stored at room temperature, demonstrating superior clot formation and stability. This suggests that cold storage may more effectively preserve platelet function, potentially offering advantages for transfusion therapy and the extension of shelf-life. However, the clinical relevance of these findings requires further investigation.
Read full abstract