Phosphine resistance in Tribolium castaneum challenges grain storage. This study investigates the impact of cytochrome P450 (CYP) enzymes and CYP346 family genes on phosphine resistance in Indian Tribolium castaneum populations. Seven field populations of T. castaneum were compared with Lab- susceptible population for their resistance to phosphine. The levels of cytochrome P450 enzyme and expression of certain CYP346 family genes were tracked in these populations. The highly resistant Patiala population showed significantly increased CYP450 activity (11.26 ± 0.14 nmol/min/mg protein, 7.41-fold higher) compared to the lab-susceptible population (1.52 ± 0.09 nmol/min/mg protein) when assayed using 8 mM p-nitroanisole as the substrate. The mRNA expression was measured relative to the standard gene RPS18 and revealed significant upregulation of CYP346B1 and CYP346B3 in highly resistant populations Moga and Patiala (CYP346B1: 12.09 ± 2.19 to 21.74 ± 3.82; CYP346B3: 59.097 ± 10.265 to 50.148 ± 8.272). Patiala's CYP346B1 exhibited an impressive 685.76-fold change, and Moga's CYP346B3 showed a 361.893-fold change compared to lab-susceptible. Linear regression confirmed robust fits for each gene (R2: 0.693 to 0.756). Principal component analysis (PCA) demonstrated a strong positive correlation between CYP346 genes expression; and cytochrome P450 activity. Patiala, Moga, and Hapur populations showed conformity, associating higher resistance with increased P450 activity and CYP346 gene expression. Cluster analysis highlighted a potential correlation between CYP346B1, CYP346B2, and CYP346B3 and P450 activity, with Patiala and Moga clustering together. Variability in CYP346B1 and CYP346B3 in strong resistance populations may contribute to adaptation and resistance mechanisms. The study provides insights into specific CYP346 family genes associated with phosphine resistance, emphasizing the intricate interaction between CYP450 detoxifying enzymes, CYP346 family genes, and resistance mechanisms. The upregulation of CYP346 genes suggests a survival advantage for T. castaneum against phosphine, diminishing phosphine's efficacy as a pest control measure.
Read full abstract