Polyphosphate kinases (PPKs) catalyse the polymerisation and degradation of polyphosphate chains. As a result of this process, PPK produces or consumes energy in the form of ATP. Polyphosphate is a linear molecule that contains tens to hundreds of phosphate residues connected by macroergic bonds, and it appears to be an easily obtainable and rich source of energy from prebiotic times to the present. Notably, polyphosphate is present in the cells of all three domains of life, but PPKs are widely distributed only in Bacteria, as Archaea and Eucarya use various unrelated or “nonhomologous” proteins for energy and metabolic balance. The present study focuses on PPK1 and PPK2 homologues, which have been described to some extent in Bacteria, and the aim was to determine which homologue group, PPK1 or PPK2, is older. Phylogenetic analyses of 109 sequence homologues of Escherichia coli PPK1 and 109 sequence homologues of Pseudomonas aeruginosa PPK2 from 109 bacterial genomes imply that polyphosphate consumption (PPK2) evolved first and that phosphate polymerisation (PPK1) evolved later. Independently, a theory of the trends in amino acid loss and gain also confirms that PPK2 is older than PPK1. According to the results of this study, we propose 68 hypothetical proteins to mark as PPK2 homologues and 3 hypothetical proteins to mark as PPK1 homologues.