Ralstonia solanacearum is a devastating phytopathogen infecting a broad range of economically important crops. Phosphate (Pi) homeostasis and assimilation play a critical role in the environmental adaptation and pathogenicity of many bacteria. However, the Pi assimilation regulatory mechanism of R. solanacearum remains unknown. This study revealed that R. solanacearum pstSCAB-phoU-phoBR operon expression is sensitive to extracellular Pi concentration, with higher expression under Pi-limiting conditions. The PhoB-PhoR fine-tunes the Pi-responsive expression of the Pho regulon genes, demonstrating its pivotal role in Pi assimilation. By contrast, neither PhoB, PhoR, PhoU, nor PstS was found to be essential for virulence on tomato plants. Surprisingly, the PhoB regulon is activated in a Pi-abundant rich medium. Results showed that histidine kinase VsrB, which is known for the exopolysaccharide production regulation, partially mediates PhoB activation in the Pi-abundant rich medium. The 271 histidine of VsrB is vital for this activation. This cross-activation mechanism between the VsrB and PhoB-PhoR systems suggests the carbohydrate–Pi metabolism coordination in R. solanacearum. Overall, this research provides new insights into the complex regulatory interplay between Pi metabolism and growth in R. solanacearum.