Abstract The Miocene tectonics of Papua New Guinea, where subduction, arc-continent collision, and changes in subduction direction are considered to have occurred, is very complex and various tectonic models have been proposed. The Maramuni arc, active in the Miocene, is composed of a chain of granitoid bodies. As the chain-like distribution indicates the generation of igneous activities in a wide range of the same tectonic settings, the study of the Maramuni arc magmatism is important for elucidating the geologic events of the time. We provide data on the petrological and geochemical characteristics of the Morobe Granodiorite that form part of the Maramuni arc. The Morobe Granodiorite consists of metaluminous I-type granitoids, belonging to the medium-K to high-K series. The whole-rock major element variations in the granitoids can be explained by the fractionation of hornblende and plagioclase. They are generally within the composition range of experimental partial melts of amphibolites, and the whole-rock trace element compositions have characteristics of slab failure magma rather than arc. This suggests that the granitoids were generated by partial melting of the torn slab after slab failure. The mafic microgranular enclaves (MMEs) in the granitoids are classified as shoshonite, and their trace element compositions suggest that they were formed by partial melting of phlogopite-bearing mantle. The occurrences of native gold and barite within the MME show that MMEs transport Au from the mantle metasomatized by slab-derived sediment melt and/or fluid to the crustal magma chamber.
Read full abstract