Genetic Predictors of the Maximum Doses Patients Receive during Clinical Use of the Antieileptic Drugs Carbamazepine and Phenytoin Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, Thom M, Sen A, Shorvon SD, Sander JW, Wood NW, Goldstein DB Proc Natl Acad Sci USA 2005;102:5507–5512. Phenytoin and carbamazepine are effective and inexpensive antiepileptic drugs (AEDs). As with many AEDs, a broad range of doses is used, with the final “maintenance” dose normally determined by trial and error. Although many genes could influence response to these medicines, obvious candidates are known. Both drugs target the α-subunit of the sodium channel, encoded by the SCN family of genes. Phenytoin is principally metabolized by CYP2C9, and both are probable substrates of the drug transporter P-glycoprotein. We therefore assessed whether variation in these genes associates with the clinical use of carbamazepine and phenytoin in cohorts of 425 and 281 patients, respectively. We report that a known functional polymorphism in CYP2C9 is highly associated with the maximum dose of phenytoin ( P = 0.0066). We also show that an intronic polymorphism in the SCN1A gene shows significant association with maximum doses in regular use of both carbamazepine and phenytoin ( P = 0.0051, and P = 0.014, respectively). This polymorphism disrupts the consensus sequence of the 5′ splice donor site of a highly conserved alternative exon (5N), and it significantly affects the proportions of the alternative transcripts in individuals with a history of epilepsy. These results provide evidence of a drug-target polymorphism associated with the clinical use of AEDs and set the stage for a prospective evaluation of how pharmacogenetic diagnostics can be used to improve dosing decisions in the use of phenytoin and carbamazepine. Although the case made here is compelling, our results cannot be considered definitive or ready for clinical application until they are confirmed by independent replication.