BackgroundIn-feed antibiotic growth promoters (AGPs) have been a cornerstone in the livestock industry due to their role in enhancing growth and feed efficiency. However, concerns over antibiotic resistance have driven a shift away from AGPs toward natural alternatives. Despite the widespread use, the exact mechanisms of AGPs and alternatives are not fully understood. This necessitates holistic studies that investigate microbiota dynamics, host responses, and the interactions between these elements in the context of AGPs and alternative feed additives.MethodsIn this study, we conducted a multifaceted investigation of how Bacitracin, a common AGP, and a natural alternative impact both cecum microbiota and host expression in chickens. In addition to univariate and static differential abundance and expression analyses, we employed multivariate and time-course analyses to study this problem. To reveal host-microbe interactions, we assessed their overall correspondence and identified treatment-specific pairs of species and host expressed genes that showed significant correlations over time.ResultsOur analysis revealed that factors such as developmental age substantially impacted the cecum ecosystem more than feed additives. While feed additives significantly altered microbial compositions in the later stages, they did not significantly affect overall host gene expression. The differential expression indicated that with AGP administration, host transmembrane transporters and metallopeptidase activities were upregulated around day 21. Together with the modulated kininogen binding and phenylpyruvate tautomerase activity over time, this likely contributes to the growth-promoting effects of AGPs. The difference in responses between AGP and PFA supplementation suggests that these additives operate through distinct mechanisms.ConclusionWe investigated the impact of a common AGP and its natural alternative on poultry cecum ecosystem through an integrated analysis of both the microbiota and host responses. We found that AGP appears to enhance host nutrient utilization and modulate immune responses. The insights we gained are critical for identifying and developing effective AGP alternatives to advance sustainable livestock farming practices.
Read full abstract