The leaf sheaths of selected inbred lines of maize (Zea mays L.) with variable levels of stem resistance to the Mediterranean corn borer Sesamia nonagrioides (Lefèvbre) were evaluated for antibiotic effect on insect development. Phytochemical analyses of leaf sheaths were conducted for cell wall phenylpropanoid content to gain a better understanding of maize-resistance mechanisms. Laboratory bioassays established that sheath tissues from different genotypes significantly affected the growth of neonate larvae. Three hydroxycinnamates, p-coumaric, trans-ferulic, and cis-ferulic acids, and three isomers of diferulic acid, 8-5', 8-O-4', and 8-5' b (benzofuran form), were identified. Significant negative correlations were found between larvae weight and diferulic acid content for six genotypes. These results are in agreement with previous studies concerning the role of cell wall structural components in stem borer resistance.