In this paper, we prepared a new type of thermoplastic vulcanizate (TPV) by melt blending methyl vinyl phenyl silicone rubber (PSR), styrene butylene copolymer (SBS), and hydrogenated SBS (SEBS) and then dynamically vulcanizing it. At the same time, we studied the influence of the content of the vulcanizing agent on the properties. The corresponding backscattered electron images were obtained by a scanning electron microscope (SEM) test of each group of samples, as well as the distribution of the PSR phase and the SEBS-SBS phase, and the vulcanization process of the samples with a vulcanizing agent content of 1 phr were characterized. According to the imaging principle of the backscattered electron signal, we found that the atomic number contrast can be clearly reflected in the backscattered image. From the obtained images, we found that PSR is a dispersed phase, while SEBS and SBS are continuous phases, that is, they had a "Sea-Island" structure. In the first 30 s of the vulcanization reaction, the "Sea-Island" structure is formed, and then the vulcanization reaction rate gradually slows down. We then printed the images and analyzed them using a colorimeter and found that it was feasible to quantitatively characterize the size of the compatible layer between the continuous and dispersed phases. According to the quantitative characterization results, we found that the silane coupling agent KH-172 can increase the thickness of the compatible layer by nearly 35%. In addition, we also tested the mechanical properties and low-temperature elastic properties of the material. Finally, we found that when the content of the vulcanizing agent was 1 phr, the elastic properties and tensile properties were the best, and when the content of the vulcanizing agent was more than 1 phr, the tensile and elastic properties of the material decreased significantly. At the same time, we also found that the addition of the silane coupling agent KH-172 can also significantly improve the tensile properties and elastic properties of TPV, which we believe is related to the increase in the thickness of the compatible layer. The test results of dynamic mechanics show that PSR has good compatibility with SEBS-SBS. When the vulcanizing agent content is less than or equal to 1 phr, the material exhibits good low-temperature resistance. In addition, through the test of the melt index of each group, it was also found that the addition of the vulcanizing agent will affect the fluidity of the melt to a certain extent. When the content of the vulcanizing agent is greater than 1 phr, the melt fluidity decreases more obviously.
Read full abstract