It has been reported recently (Begin-Heick, N. (1985) J. Biol. Chem. 260, 6187-6193) that adipocytes from the obese mouse strain (ob/ob), unlike normal mice (+/+), lack functional Gi, a GTP-regulated protein complex that mediates inhibition of adenylate cyclase. In contrast, we have found functional Gi linked to inhibition of adenylate cyclase in adipocyte membranes from both ob/ob and +/+ mice. This conclusion is based on observation of: 1) GTP-dependent inhibition of adenylate cyclase by antilipolytic agents, such as prostaglandin E2, nicotinic acid, and the adenosine receptor agonist, phenylisopropyladenosine (PIA); 2) classical biphasic GTP kinetics, with stimulation by low and inhibition by high concentrations of GTP; and 3) elimination of cyclase inhibition by antilipolytic agents upon treatment of ob/ob adipocytes with pertussis toxin. Upon treatment with pertussis toxin and [32P] NAD, purified adipocyte membranes from ob/ob mice incorporated twice as much radioactivity per unit membrane protein than those from +/+ mice in the 40,000-42,000 region. The inhibitory actions of PIA on adenylate cyclase were blocked by the adenosine receptor antagonists, theophylline and isobutylmethylxanthine. However, in contrast to other known inhibitory adenosine receptors, relatively high (100 nM) PIA concentrations were required for half-maximal inhibition of adenylate cyclases from both +/+ and ob/ob adipocytes. The adipocyte adenylate cyclase from both mouse strains were approximately equally susceptible to inhibition by nicotinic acid and prostaglandin E2. However, the ob/ob cyclase was inhibited by 47% with PIA, whereas the enzyme from the +/+ mouse was inhibited by only 27% (p less than 0.01). This greater inhibition by adenosine may contribute to abnormal fat metabolism in adipocytes from ob/ob mice.