A new autosomal mutation, Axd (axial defects), is described. Axd segregates in a simple Mendelian fashion, and it is dominant with incomplete penetrance and variable expressivity. The phenotype of Axd heterozygotes ranges from a variety of tail anomalies to visibly normal tails. Approximately 12% of neonates from curly-tail (CT) F1 (Axd/+) x F1 (Axd/+) matings exhibit open neural tube defects (NTD) in the lumbosacral region and 16% have curly tails. Mean litter sizes and resorption rates comparable to wild type indicate that homozygosity for Axd is not obligately lethal. Genetic background plays a major role in Axd expression. Strains such as BALB/cByJ allow the highest penetrance of the mutation in single dose (46%), whereas, in CF-1 mice Axd is recessive. The tail phenotype of heterozygous Axd/+ dams, in part reflective of their genetic background, correlates with the incidence of NTD in F2 offspring: CT mothers produce significantly more neonates with frank NTD than normal tail mothers. At the one embryonic period examined for this study (D13/D14 post-coitus), an 85% higher incidence of total axial defects is observed than among the F2 at birth. Unchanging litter size and the relative increase in phenotypically normal offspring by birth suggest that Axd acts by delaying posterior neural tube closure. One of the most significant findings in this study is that maternal age influences the survival of Axd embryos in utero. Axd/+ dams older than 8 months yield fewer mean implants, higher resorption rates, and fewer viable embryos with axial defects than do Axd/+ dams younger than 8 months. Axd is not allelic to nor linked to the Sp (splotch) gene which also affects neurulation.