BackgroundThe majority of research on obesity has focused primarily on clinical features (eating behavior, adiposity measures), or peripheral appetite-regulatory peptides (leptin, ghrelin). However, recent functional neuroimaging studies have demonstrated that some reward circuitry regions which are associated with appetite-regulatory hormones are also involved in the development and maintenance of obesity. Prader-Willi syndrome (PWS), characterized by hyperphagia and hyperghrelinemia reflecting multi-system dysfunction in inhibitory and satiety mechanisms, serves as an extreme model of genetic obesity. Simple (non-PWS) obesity (OB) represents an obesity control state.ObjectiveThis study investigated subcortical food motivation circuitry and prefrontal inhibitory circuitry functioning in response to food stimuli before and after eating in individuals with PWS compared with OB. We hypothesized that groups would differ in limbic regions (i.e., hypothalamus, amygdala) and prefrontal regions associated with cognitive control [i.e., dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC)] after eating.Design and ParticipantsFourteen individuals with PWS, 14 BMI- and age-matched individuals with OB, and 15 age-matched healthy-weight controls (HWC) viewed food and non-food images while undergoing functional MRI before (pre-meal) and after (post-meal) eating. Using SPM8, group contrasts were tested for hypothesized regions: hypothalamus, nucleus accumbens (NAc), amygdala, hippocampus, OFC, medial PFC, and DLPFC.ResultsCompared with OB and HWC, PWS demonstrated higher activity in reward/limbic regions (NAc, amygdala) and lower activity in hypothalamus and hippocampus, in response to food (vs. non-food) images pre-meal. Post-meal, PWS exhibited higher subcortical activation (hypothalamus, amygdala, hippocampus) compared to OB and HWC. OB showed significantly higher activity versus PWS and HWC in cortical regions (DLPFC, OFC) associated with inhibitory control.ConclusionIn PWS compared with obesity per se, results suggest hyperactivations in subcortical reward circuitry and hypoactivations in cortical inhibitory regions after eating, which provides evidence of neural substrates associated with variable abnormal food motivation phenotypes in PWS and simple obesity.