Legume species are recognized for their nutritional benefits and contribution to the sustainability of agricultural systems. However, their production is threatened by biotic constraints with devastating impacts on crop yield. A deep understanding of the molecular and genetic architecture of resistance sources culminating in immunity is critical to assist new biotechnological approaches for plant protection. In this review, the current knowledge regarding the major plant immune system components of grain and forage legumes challenged with obligate airborne biotrophic fungi will be comprehensively evaluated and discussed while identifying future directions of research. To achieve this, we will address the multi-layered defense strategies deployed by legume crops at the biochemical, molecular, and physiological levels, leading to rapid pathogen recognition and carrying the necessary information to sub-cellular components, on-setting a dynamic and organized defense. Emphasis will be given to recent approaches such as the identification of critical components of host decentralized immune response negatively regulated by pathogens while targeting the loss-of-function of susceptibility genes. We conclude that advances in gene expression analysis in both host and pathogen, protocols for effectoromics pipelines, and high-throughput disease phenomics platforms are rapidly leading to a deeper understanding of the intricate host-pathogen interaction, crucial for efficient disease resistance breeding initiatives.
Read full abstract