The effects of stilbene derivatives, including resveratrol, diethylstilboestrol and stilbene, as antioxidants or prooxidants were examined. Resveratrol and diethylstilboestrol, but not stilbene, strongly inhibited NADPH- and adenosine 5'-diphosphate (ADP)-Fe3+-dependent lipid peroxidation at the initial and propagation stages. In addition, phenolic stilbenes also inhibited ultraviolet light-induced lipid peroxidation. Resveratrol and diethylstilboestrol efficiently scavenged 2,2'-azobis-(2-amidinopropane)-dihydrochloride peroxyl radicals. However, 2,2'-diphenyl-p-picrylhydrazyl radicals were trapped only by resveratrol, but not by diethylstilboestrol. These results suggest that the inhibitory effect of phenolic stilbenes on lipid peroxidation was due to their scavenging ability of lipid peroxyl and/or carbon-cantered radicals. Resveratrol efficiently reduced ADP-Fe3+, but not EDTA-Fe3+. Stilbenes and diethylstilboestrol did not reduce either ADP-Fe3+ or EDTA-Fe3+. The strand breaks of DNA were stimulated during the interaction of resveratrol with ADP-Fe3+ in the presence of H2O2. These results suggest that phenolic stilbenes act as antioxidants of membrane lipids and that resveratrol has a prooxidative effect DNA damage during interaction with ADP-Fe3+ in the presence of H2O2.