A response surface methodology (RSM) with a central composite design (CCD) was developed to predict and apply the best ultrasound-assisted extraction (UAE) conditions, including the extraction time, the composition of aqueous-ethanolic extractants, and the solvent-to-plant-material ratio, for obtaining the highest yields of different types of polyphenolic components from the dried flower buds of Magnolia × soulangeana Soul.-Bod. var. 'Lennei' (MSL). The novel approach in the RSM procedure resulted from the simultaneous optimisation of UAE conditions to obtain extracts with the highest antioxidant and antiradical potential (examined as dependent variables), using appropriate spectrophotometric assays, with Folin-Ciocâlteu and 2,2-diphenyl-1-picrylhydrazyl reagents, respectively. The use of 66.8% (V/V) ethanol as the extraction solvent during the 55.2 min extraction protocol and the ratio of extractant volume to herbal substance of 46.8 mL/g gave the highest total yield of bioactive antioxidant phenolics in the extract obtained. For this herbal preparation, a qualitative and quantitative analysis was performed using combined chromatographic (LC), spectroscopic (PDA), and tandem mass spectrometric (ESI-QToF-MS/MS) techniques. A detailed phytochemical profiling, conducted for the first time, documented substantial amounts of various polyphenolic antioxidants, especially phenylethanoids and flavonoids, in the MSL flower buds. Their average total content exceeded 30.3 and 36.5 mg/g dry weight, respectively.
Read full abstract