Carrier utilization in organic photocatalytic materials is unsatisfactory due to the large exciton binding energy and short exciton diffusion length. Both donor-acceptor (D-A) strategies and porous designs are promising approaches to improve carrier utilization in photocatalysts. However, a more efficient way is to shorten the distance of exciton migration to the catalyst surface by the charge transfer (CT) process. Herein, hydrogen-bonded organic framework-like cocrystal (NDI-Cor HOF-cocrystal) is prepared with novel structures serving as a proof of concept for the approach, using N, N'-bis (5-isophthalate) naphthalimide (NDI-COOH) as the porous framework and acceptor, and Coronene (Cor) as the donor unit. CT and porous engineering are integrated through cocrystal strategy. Under light irradiation, photogenerated excitons transfer and dissociate from the inner surface of the micropores on a hundred-picosecond time scale, where efficient radical transformation and further redox reactions with adsorbed phenol molecules occur. NDI-Cor HOF-cocrystal photocatalytic degradation of phenol is 15 times higher than that of original HOFs, and achieves near 90% deep mineralization of phenol. Significantly, this work has designed novel HOF-cocrystal and also provides new modification strategies for high performance organic photocatalysts.