The plastic waste crisis is catalyzing change across the plastics life cycle. Central to this is increased production and application of bioplastics and biodegradable plastics. In particular, poly(hydroxybutyrate) (PHB) is a biodegradable bioplastic that can be produced from various renewable and waste feedstocks and is a promising alternative to some petrochemical-derived and non-biodegradable plastics. Despite its advantages, PHB biodegradation depends on environmental conditions, and the effects of degradation into microplastics, oligomers, and the 3-hydroxybutyrate (3-HB) monomer on soil microbiomes are unknown. We hypothesized that the ease of PHB biodegradation renders this next-generation plastic an ideal feedstock for microbial recycling into platform chemicals currently produced from fossil fuels. To demonstrate this, we report the one-pot degradation and recycling of PHB into acetone using a single strain of engineered Escherichia coli. Following strain development and initial bioprocess optimization, we report maximum titers of 123 mM acetone (7 g/L) from commercial PHB granules after 24 h fermentation at 30 °C. We further report biorecycling of an authentic sample of post-consumer PHB waste at a preparative scale. This is the first demonstration of biological recycling of PHB into a second-generation chemical, and it demonstrates next-generation plastic waste as a novel feedstock for the circular bioeconomy.
Read full abstract