Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain largely unexplored. The present study aimed to investigate MH's effect on drug-sensitive and drug-resistant NSCLC and its potential mechanism of action. Methods: We isolated MH from M. koenigii leaves and the purity (99%) was confirmed by HPLC, LC-MS and NMR. The antiproliferative activity of MH was determined using MTT and colony formation assays against drug-sensitive (A549 and H1299) and Taxol-resistant lung cancer cells (A549-TR). Western blot analysis was performed to determine MH's effects on various molecular targets. Anti-tumor activity of MH was determined against lung tumors developed in female NOD Scid mice injected with A549-Fluc bioluminescent cells (1.5 × 106) intrathoracically. Results: MH dose-dependently reduced the proliferation of all lung cancer cells (A549, H1299 and A549-TR), with IC50 values of 7.5, 5, and 10 µM, respectively. Mechanistically, MH arrested cell growth in the G0/G1 and G2/M phases of the cell cycle by inhibiting cyclin-dependent kinase 4/6 (CDK4/6) and cell division control 2 (CDC2) and induced apoptosis through the downregulation of B-cell leukemia/lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL). The apoptotic induction capacity of MH can also be attributed to its ability to inhibit pro-oncogenic markers, including mesenchymal-epithelial transition factor receptor (MET), phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), survivin, rat sarcoma viral oncogene (RAS), myelocytomatosis oncogene (cMYC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels. In vivo, MH (25 mg/kg b. wt.) significantly (p < 0.001) inhibited the growth of A549 lung cancer orthotopic xenografts in NOD Scid mice by 70%. Conclusions: Our study provides new mechanistic insights into MH's therapeutic potential against NSCLC.
Read full abstract