In this paper, a novel 2D Nolen beamforming phased array with 3D scanning capability to achieve high channel capacity is presented for multiple-input multiple-output (MIMO) Internet-of-Things (IoT) applications. The proposed 2D beamforming phased array is designed by stacking a fundamental building block consisting of a 3 × 3 tunable Nolen matrix, which applies a small number of phase shifters with a small tunning range and reduces the complexity of the beam-steering control mechanism. Each 3 × 3 tunable Nolen matrix can achieve a full 360° range of progressive phase delay by exciting all three input ports, and nine individual radiation beams can be generated and continuously steered on azimuth and elevation planes by stacking up three tunable Nolen matrix in horizontal and three in vertical to maximize signal-to-noise ratio (SNR) in the corresponding spatial directions. To validate the proposed design, the simulations have been conducted on the circuit network and assessed in a fading channel environment. The simulation results agree well with the theoretical analysis, which demonstrates the capability of the proposed 2D Nolen beamforming phased array to realize high channel capacity in MIMO-enabled IoT communications.
Read full abstract