High-coercivity Nd–Fe–B permanent magnets crucially depend on the deliberate modulation of intergranular phases, an important embodiment being I4/mcm-tetragonal Nd6Fe13Ga intergranular phase in the Nd–Fe–Ga–B magnet. Particularly, for the Nd–Dy–Fe–Cu–Ga–B magnet containing multiple rare earths (RE) and alloying metals (M), understanding the evolution of RE6(Fe,M)14 intergranular phase becomes more critical in the quest for higher coercivity. Here we design the (Nd,Pr)29.0Dy3.0FebalCu0.5Ga0.5B0.9N1.15 (N=Co, Al, Zr, wt.%) as-sintered magnets, where the major RE/Cu/Ga-rich Ia3¯-cubic intergranular phase is agglomerated in triple junctions. These pristine as-sintered magnets are subjected to annealing over a wide temperature range (390∼900 °C for 3 h) and quenching over a wide time range (0.5∼12 h at 460 °C). Through systematic microstructural characterization and first-principle calculation, the intergranular phase transformation from RE/Cu/Ga-rich Ia3¯-cubic to Fe/Ga-rich I4/mcm-tetragonal structure, and accompanying elemental segregation is unveiled. During post-sinter annealing, metastable state I firstly occurs, consisting of nanostructured RE/Cu-rich Ia3¯-cubic and I4/mcm-tetragonal lamellas, with the emergence of multi-twins and coherent interface. Then it evolves into metastable state II, consisting of lath-shaped Fe/Cu/Ga-rich I4/mcm-tetragonal structure with fluctuating Fe/Cu concentrations. Simultaneously, metastable state III occurs, exhibiting P4-tetragonal platelets with lower Cu content and reduced crystallographic symmetry. Finally, heightened Fe/Ga diffusion into the lattice of tetragonal phase with synchronous Cu discharge generates the thermodynamically more stable Fe/Ga-rich RE6Fe13Ga phase. The implication of phase transformation pathways on the coercivity is discussed, offering valuable insights into the optimization of RE6(Fe,M)14 intergranular phase and allowing more space for enhanced coercivity.
Read full abstract