Abstract

We examine structural and magnetic properties of a series of La–Fe–Si alloys in the region of concentrations where they naturally form two-phase LaFeSi–LaFe13−xSix composites with variable content and connectivity of LaFe13−xSix grains distributed within the LaFeSi matrix. Theoretical calculations confirm that the LaFeSi constituent is magnetically and structurally inert below room temperature and at pressures between −10 and 10 GPa. The LaFe13−xSix constituent, on the other hand, is magnetically and structurally active: it exhibits first-order magnetostructural transformations that, in addition to xSi, can be controlled with temperature, magnetic field, and pressure. In composites where the concentration of the inactive constituent is ∼70 wt. % or greater, the standard, single-step, LaFe13−xSix first-order phase transformation proceeds in two steps separated by over 30 K in a zero magnetic field. Increasing the magnetic field recouples the two steps and restores the single-step phase transformation pathway. We analyze the roles of stresses caused by both thermal expansion mismatch and the first-order magnetic phase transition in LaFe13−xSix to rationalize the observed physical behaviors that emerge as the temperature or/and magnetic field vary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.