Using quantum systems as sensors or probes has been shown to greatly improve the precision of parameter estimation by exploiting unique quantum features such as entanglement. A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one. It has been solved for some specific instances of the problem, but in general even numerical methods are not known. Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe (which can be entangled with an auxiliary system), the optimal measurement, and the optimal estimator function. We leverage the formalism of higher-order operations to develop a method based on semidefinite programming that finds a protocol that is close to the optimal one with arbitrary precision. Crucially, our method is not restricted to any specific quantum evolution, cost function, or prior distribution, and thus can be applied to any estimation problem. Moreover, it can be applied to both single-parameter or multiparameter estimation tasks. We demonstrate our method with three examples, consisting of unitary phase estimation, thermometry in a bosonic bath, and multiparameter estimation of an SU(2) transformation. Exploiting our methods, we extend several results from the literature. For example, in the thermometry case, we find the optimal protocol at any finite time and quantify the usefulness of entanglement. Published by the American Physical Society 2024
Read full abstract