The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below T(ODT) (order-disorder transition temperature). Within the midblock flexibility range we studied (l(p)N(c)<or=0.105), a lamellar structure is formed at equilibrium state as the situation for fully flexible chains. The fraction of bridge chain is evaluated for the lamellar structures. We find that the increase in midblock rigidity indeed results in the increase in bridge chain fraction within the range from 44.9% to 51.8%. In order to elucidate phase behavior evolution observed in our simulation, a detailed conformation distribution analysis is also given. Our results bridge a gap of different phase behaviors between rod-coil block copolymer and coil-coil block copolymer and show a necessity to investigate rigidity influence on phase diagram.