SummaryThe catastrophic declines of three species of ‘Critically Endangered’ Gyps vultures in South Asia were caused by unintentional poisoning by the non-steroidal anti-inflammatory drug (NSAID) diclofenac. Despite a ban on its veterinary use in 2006 (India, Nepal, Pakistan) and 2010 (Bangladesh), residues of diclofenac have continued to be found in cattle carcasses and in dead wild vultures. Another NSAID, meloxicam, has been shown to be safe to vultures. From 2012 to 2018, we undertook covert surveys of pharmacies in India, Nepal and Bangladesh to investigate the availability and prevalence of NSAIDs for the treatment of livestock. The purpose of the study was to establish whether diclofenac continued to be sold for veterinary use, whether the availability of meloxicam had increased and to determine which other veterinary NSAIDs were available. The availability of diclofenac declined in all three countries, virtually disappearing from pharmacies in Nepal and Bangladesh, highlighting the advances made in these two countries to reduce this threat to vultures. In India, diclofenac still accounted for 10–46% of all NSAIDs offered for sale for livestock treatment in 2017, suggesting weak enforcement of existing regulations and a continued high risk to vultures. Availability of meloxicam increased in all countries and was the most common veterinary NSAID in Nepal (89.9% in 2017). Although the most widely available NSAID in India in 2017, meloxicam accounted for only 32% of products offered for sale. In Bangladesh, meloxicam was less commonly available than the vulture-toxic NSAID ketoprofen (28% and 66%, respectively, in 2018), despite the partial government ban on ketoprofen in 2016. Eleven different NSAIDs were recorded, several of which are known or suspected to be toxic to vultures. Conservation priorities should include awareness raising, stricter implementation of current bans, bans on other vulture-toxic veterinary NSAIDs, especially aceclofenac and nimesulide, and safety-testing of other NSAIDs on Gyps vultures to identify safe and toxic drugs.
Read full abstract