Despite the frequent use of methylphenidate (MPH) in school-aged children with disorders of attention, impulsivity, and activity regulation (attention deficit disorder, ADD), little is known of its clinical pharmacology. The pharmacokinetics of MPH as well as its effects on growth hormone and prolactin were examined after oral administration in 14 boys with ADD ranging in age from 7 to 12 years (mean 10.4 years). Peak concentrations determined in these acute studies were compared with concentrations obtained two hours after MPH administration in another group of children with ADD who were receiving MPH chronically. After a lag phase of approximately ½ to 1 hour, MPH reached a peak plasma concentration at 2.5 ± 0.65 hours after 0.34 mg/kg and 1.9 ± 0.82 hours after 0.65 mg/kg (mean ± SD). Terminal half-lives were 2.53 ± 0.59 and 2.61 ± 0.29 hours after administration of 0.34 and 0.65 mg/kg, respectively. Observed maximal concentrations ranged from 11.2 ± 2.7 ng/ml after administration of 0.34, and 20.2 ± 9.1 ng/ml after administration of 0.65 mg/kg. The mean area under the curve after administration of 0.65 mg/kg was approximately double that calculated at 0.34 mg/kg. Plasma growth hormone increased significantly from an initial (pre-MPH) mean concentration of 4.4 to peak at two hours at 10.5 ng/ml. Prolactin concentration declined significantly from a pre-MPH level of 9.5 to a nadir at 1½ hours of 3.80 ng/ml, supporting the notion that MPH is acting via central dopaminergic mechanisms. MPH concentrations in children receiving doses of 0.34 mg/kg chronically averaged 8.00 ± 0.91 at two hours, after medication, approximating the mean concentration at the same time observed in the acute study. The concentration of MPH in single "spot" samples obtained at two to three hours after administration of medication were significantly correlated with the percentage of improvement in the abbreviated Conners rating scale, indicating a relationship between plasma MPH concentration and clinical response.