BackgroundMethadone use for the management of opioid dependency during pregnancy is commonplace. Methadone levels are altered during pregnancy due to changes in maternal physiology. Despite this, a paucity of data exist regarding the most appropriate optimal dosing regimens during pregnancy. MethodsThis study applied a pharmacokinetic modeling approach to examine gestational changes in R- and S-methadone concentrations in maternal plasma and fetal (cord) blood. This study did so to derive a theoretical optimal dosing regimen during pregnancy, and to identify the impact of Cytochromes P450 (CYP) 2B6 and 2C19 polymorphisms on methadone maternal and fetal pharmacokinetics. ResultsThe study noted significant decreases in maternal R- and S-methadone plasma concentrations during gestation, with concomitant increases in fetal levels. At a dose of 90 mg once daily, 75% (R-) and 94% (S-) of maternal methadone trough levels were below the lower therapeutic window at term (week 40). The developed optimal dosing regimen escalated doses to 110 mg by week 5, followed by 10 mg increments every 5 weeks up to a maximum of 180 mg once daily near term. This increase resulted in 27% (R-) and 11% (S-) of subjects with trough levels below the lower therapeutic window at term. CYP2B6 poor metabolizers (PM) and either CYP2C19 extensive metabolizers (EM), PM, or ultra-rapid (UM) metabolizer phenotypes demonstrated statistically significant increases in concentrations when compared to their matched CYP2B6 EM counterparts. ConclusionsSpecific and gestation-dependent dose titrations are required during pregnancy to reduce the risks associated with illicit drug use and to maintain fetal safety.