Matrix-Assisted Laser Desorption/Ionization (MALDI) imaging has emerged as a powerful analytical technique, enabling direct tissue imaging in pharmaceutical research. This review provides an in-depth exploration of the principles, methodologies, and applications of MALDI imaging in the context of studying drug distribution and molecular changes within tissues. provides a structured approach to exploring the principles, methodologies, applications, challenges, and future directions of MALDI Imaging in pharmaceutical research. Each section aims to contribute to a comprehensive understanding of the technique’s significance and potential for transformative contributions to the field. The study begins by elucidating the underlying principles of MALDI imaging, highlighting the role of matrix-assisted laser desorption/ionization in generating spatially resolved mass spectra from biological samples. Special emphasis is placed on advancements in instrumentation and sample preparation techniques that have enhanced the spatial resolution and sensitivity of MALDI imaging. The application of MALDI imaging in pharmaceutical research is comprehensively explored, focusing on its pivotal role in drug development, pharmacokinetic studies, and toxicity assessments. Case studies and examples illustrate how MALDI imaging facilitates the visualization of drug distribution within tissues, offering valuable insights into drug metabolism, biodistribution, and pharmacodynamics.