Tailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes. We revealed that a specialized subpopulation, constituting less than 1% of the total bacterial population, differentiates to produce, assemble and store thousands of tailocin particles. Tailocins are packed in a highly ordered manner, clustered in a liquid crystalline phase that occupies a substantial volume of the cell. Tailocin production confers a competitive growth advantage for the rest of the population. This study provides molecular insights into tailocin production as a form of altruism, showing how cell specialization within bacterial populations can confer competitive advantages at the population level.
Read full abstract