Osteoarthritis (OA) is a prevalent degenerative disease characterized by irreversible destruction of articular cartilage, for which no current drugs are known to modify its progression. While intra-articular (IA) injections of hyaluronic acid (HA) offer temporary relief, their effectiveness and long-term benefits are debated. Alpha-ketoglutarate (αKG) has potential chondroprotective properties, but its use is limited by a short half-life and poor cartilage-targeting efficiency. Here, we developed self-assembled HA-αKG nanoparticles (NPs) to combine the benefits of both HA and αKG, showing stability, bioavailability, and sustained pH-responsive release in the knee joint. In both early and advanced OA stages in mice, HA, αKG, and HA-αKG NPs could relieve pain, enhance mobility, and reduce cartilage damage, with HA-αKG NPs demonstrating the best efficacy. Mechanistically, αKG not only promotes cartilage matrix synthesis but also inhibits degradation by activating the PERK-ATF4 signaling pathway to reduce endoplasmic reticulum stress (ERS) in chondrocytes. This study highlights the therapeutic potential of HA-αKG NPs for treating various OA stages, with efficient and sustained effects, suggesting rapid clinical adoption and high acceptability among clinicians and patients.