A synthetic, 26-residue peptide having a strong helix forming potential in the protonated state was designed to interact with lipid bilayers in a pH-dependent way. On the basis of this concept a cluster of four glutamic acid residues was inserted in the central region of the amphipathic peptide to promote helix destabilization by mutual charge repulsion at neutral pH. Protonation of these residues might then bring about both a pH-mediated change in hydrophobicity and conformation forming a membrane-active amphiphilic helix. The sequence GLGTLLTLLEFLLEELLEFLKRKRQQamide produced by the design strategy induced pH-triggered lysis of human erythrocytes. A molecular model correlating the lytic activity to the formation of transmembrane pores which were detected by electron microscopy in erythrocyte membranes is discussed. Circular dichroism studies indicated a self-association of the monomeric random coil form with increasing peptide concentration leading to the apparent induction of strong alpha-helix formation (approximately 100% helicity) in the fully aggregated state. However, no pH-dependent helix-random coil transition was observed, implying that interhelical hydrophobic and ionic interactions not only govern the self-association but also decisively influence the conformational stability of the peptide.