Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses. This study aimed to test whether TriDAP stimulates cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and prostanoid production in human dental pulp cells (HDPCs) and their inhibition by signal transduction inhibitors, melatonin, and eugenol. We found that TriDAP stimulated cPLA2 and COX-2 expression as well as prostaglandin E2 (PGE2) and PGF2α secretion in HDPCs. TriDAP activated TAK1, MEK/ERK, and p38 signaling. COX-2 expression, PGE2, and PGF2α production induced by TriDAP were prevented by 5Z-7oxozeaenol, SB203580, and U0126. Moreover ASB14780 (a cPLA2 inhibitor) and the clinical drugs melatonin and eugenol suppressed TriDAP- and Poly(I:C)-stimulated PGE2 and PGF2α production. These results indicate that NOD activation in HDPCs may stimulate COX-2 expression and prostaglandin production, which are crucial in pulpal inflammatory and repair responses. The effects of TriDAP and Poly(I:C) were associated with TAK1, p38, MEK/ERK, and cPLA2 in pulpal inflammation. PLA2 inhibitors, melatonin, and eugenol can be used to control pulpal inflammation associated with NOD1/2 and TLR3 activation.
Read full abstract