Exposure to organophosphate flame retardants and plasticizers (PFRs) increases the risk of asthma and allergies. However, little is known about its association with type 2 inflammation (T2) biomarkers used in the management of allergies. The study investigated associations among urinary PFR metabolite concentrations, allergic symptoms, and T2 biomarkers. The data and samples were collected between 2017 and 2020, including school children (n = 427) aged 9–12 years living in Sapporo City, Japan, among the participants of “The Hokkaido Study on Environment and Children’s Health.” Thirteen urinary PFR metabolites were measured by LC-MS/MS. Allergic symptoms were assessed using the International Study of Asthma and Allergies in Childhood questionnaire. For T2 biomarkers, the peripheral blood eosinophil counts, fraction of exhaled nitric oxide level (FeNO), and serum total immunoglobulin E level were measured. Multiple logistic regression analysis, quantile-based g-computation (qg-computation), and Bayesian kernel machine regression (BKMR) were used to examine the associations between the health outcomes of the individual PFRs and the PFR mixtures. The highest concentration of PFR was Σtris(1-chloro-isopropyl) phosphates (ΣTCIPP) (Median:1.20 nmol/L). Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was significantly associated with a high odds ratio (OR, 95%CI:1.36, 1.07–1.72) for wheeze. TDCIPP (OR, 95%CI:1.19, 1.02–1.38), Σtriphenyl phosphate (ΣTPHP) (OR, 95%CI:1.81, 1.40–2.37), and Σtris(2-butoxyethyl) phosphate (ΣTBOEP) (OR, 95%:1.40, 1.13–1.74) were significantly associated with increased odds of FeNO (≥35 ppb). ΣTPHP (OR, 95%CI:1.44, 1.15–1.83) was significantly associated with high eosinophil counts (≥300/μL). For the PFR mixtures, a one-quartile increase in all PFRs (OR, 95%CI:1.48, 1.18–1.86) was significantly associated with high FeNO (≥35 ppb) in the qg-computation model. The PFR mixture was positively associated with high FeNO (≥35 ppb) and eosinophil counts (≥300/μL) in the BKMR models. These results may suggest that exposure to PFRs increases the probability of asthma, allergies, and T2 inflammation.
Read full abstract