BackgroundThe genetic diversity of malaria parasites contributes to their ability to adapt to environmental changes, develop drug resistance and circumvent the host immune system. This study aimed to analyse the genetic diversity of the Pfmsp1 and Pfmsp2 genes in Plasmodium falciparum and the Pvmsp-3α gene in Plasmodium vivax isolates from District Nowshera in Pakistan.MethodsBlood samples from 124 consenting patients with uncomplicated malaria presenting to different hospitals from the Nowshera district were collected between March and August 2019, representing 28 P. falciparum and 96 P. vivax isolates. The genomic DNA extracted from the isolates were subjected to nested PCR and allele-specific analysis. Pvmsp-3α amplified fragments were further treated with restriction fragment length polymorphism (RFLP)-based Hha1 restriction enzyme.ResultsOf the analyzed P. falciparum, 21 distinct alleles were detected, including 14 alleles for Pfmsp-1 and 7 alleles for Pfmsp-2. The sub-allelic families MAD20 (50%) of Pfmsp-1and FC27 (75%) of Pfmsp-2 were predominant. The multiplicity of infection (MOI) was calculated as 1.4 and 1.2 for Pfmsp-1 and Pfmsp-2, respectively, with an overall mean MOI of 1.34. In P. vivax, 4 allelic variants, Pvmsp-3α types A, B, C and D, were detected, while RFLP digestion of amplicons, detected 9 sub-allelic variants (A1-A4, B1, B2, C1, C2 and D1) at the Pvmsp-3α locus.ConclusionThis first ever report of molecular characterization of P. falciparum and P. vivax genotypes from District Nowshera, Pakistan reveals moderate to high allelic diversity in parasite population from District Nowshera, Pakistan.
Read full abstract