Iron chelates analogous to ethylenediamino‐di(o‐hydroxyphenyl)acetic acid (EDDHA) are the fertilizers chosen to treat iron chlorosis of crops grown on calcareous soils. Characterization of these synthetic ligands should be made to establish their chemical behavior and efficiency as chlorosis correctors. The aim of this research was to develop an appropriate methodology to screen new iron chelates using analytical determinations and chemical equilibrium concepts. Fe‐EDDHA, Fe‐EDDH4MA, Fe‐EDDH5MA, and Fe‐PDDHA chelates, were compared to check the proposed methodology. Titrimetric purity, protonation and Ca, Mg, and Fe(III) stability constants, pFe and species distribution in nutrient solution and soil conditions were determined. The iron chelate stability constants were in order EDDHA > EDDH4MA > EDDH5MA > PDDHA. When pFe was calculated, the larger value corresponds to Fe‐EDDHA chelate at pH below 8; but at pH above 8 the Fe‐EDDH4MA shows the larger pFe values. When the species was plotted against pH, the dominant species was FeL− at the physiological pH range in all cases. The pH at a FeL/LT ratio of 80% in both Fe(OH)3amorp and Fesoil systems was considered as an iron chelate stability index. This index was EDDH4MA > EDDH5MA > EDDHA > PDDHA in both systems, but shows that all of the chelates tested were sufficiently stable in most soil and nutrient solution conditions. In conclusion, the proposed procedure is adequate for the preliminary evaluation of the synthetic chelating agents, using important parameters such as analytical and speciation properties to predict their chelating behavior and efficiency in nutrient solution and soil conditions.
Read full abstract