The accuracy and stability of the envelope estimation function are enduring issues throughout the research process of LMD. This paper presents double interpolation and mutation interval reconstruction local mean decomposition (DIMIRLMD) to improve the stability of the demodulation process and the accuracy of PF components. DIMIRLMD first proposes a mutation interval reconstruction envelope algorithm using extreme symmetry points to suppress the demodulation mutation phenomenon, which disturbs the stability of the demodulation process, and then selects the optimal PF component from a double interpolation PF component library based on the index of orthogonality (IO) for a better hierarchical property. DIMIRLMD was employed to analyze the simulation signal and vibration signal of a reciprocating compressor in an oversized bearing clearance state, and the results illustrate its performances are more excellent than those of three other LMD methods. Furthermore, the envelope frequency spectrum obtained from the proposed LMD presents a clear double rotation fault frequency and lower noise disturbance.
Read full abstract