Running pulsed-neutron logs in Malaysia has previously been plagued by results with high uncertainties, especially in brown fields with complex multistacked clastic reservoirs. Together with a wide range of porosities and permeabilities, the acquired logs quite often tended to yield inconclusive results. In addition, the relatively fresh aquifer water (where salinity varies from 5,000 to 40,000 ppm) makes reservoir fluid typing and distinguishing between oil and water even more challenging. As a result, the inconsistencies and uncertainties of the results tend to leave more questions than answers. Confidence in using pulsed-neutron logging, especially to validate fluid contacts for updating static and dynamic reservoir models, deteriorated within the various study teams. Due to this fact, the petrophysics team took the initiative to conduct a three-tool log off in one of their wells with the objective of making a detailed comparison of three pulsed-neutron tools in Malaysia’s market today. The main criteria selected for comparisons were the consistency of the data, repeatability, and statistical variations. With recent advancements in pulsed-neutron (multidetector) tool technology, newer tools are being equipped with more efficient scintillation crystals, improving the repeatability of the measurements as well as the number of gamma ray (GR) count rates associated with the neutron interactions. In addition, the newer tools now have up to five detectors per tool, with the farthest detector supposedly being able to “see” deeper into the formation, albeit at a lower resolution. With these new features in mind, the log off was conducted in a single well with a relatively simple completion string (single tubing, single casing), logged during shut-in conditions only, and the logs were acquired directly one after the other (back to back) to avoid bias to any particular tool. Both sigma and spectroscopy measurements were acquired to compare the capabilities of each tool. Due to the relatively freshwater salinity, the carbon-oxygen (C/O) ratio from the spectroscopy measurements is used to identify the remaining oil located in the reservoirs, while the sigma measurements determine the gas-oil or gas-water contact, if present. This paper will illustrate the steps taken by Petronas Carigali Sdn Bhd (PCSB) to compare the raw data and interpreted results from the three pulsed-neutron tools. Consequently, a comparison from all the tools was made to the current understanding of the reservoir assessed. The points from these comparisons will then show which tools are favored over the rest.