Recently, there has been growing concern about the impacts of metal pollutants on insect populations, particularly as human societies increasingly rely on metal-based technologies. Unlike organic pollutants, metals - both essential and non-essential - are non-degradable and readily accumulate in insect tissues, sometimes reaching hazardous levels. While numerous studies address how insects cope with pesticide pollution, there is a notable scarcity of knowledge regarding their abilities to confront metal pollution. This paper reviews the routes of entry for metals into insect cells and the molecular damages they trigger. Additionally, it examines the defence mechanisms insects may employ to counteract metal pollution. Firstly, insects may detect and avoid metals in their environment, thereby escaping contaminated food, substrates, and oviposition sites. Secondly, the insect cuticle and gut lining, including the gut microbiota, may serve as physical barriers preventing metal entry into the hemolymph, thereby protecting other organs. Thirdly, insect cells may detoxify metals by sequestering them in metal-scavenging proteins (e.g., metallothioneins) and excreting them via faeces or the cuticle. Fourthly, when metal-related damage occurs, including oxidative stress, protein unfolding, and DNA deformation, insect cells may respond by upregulating antioxidant molecules, chaperone proteins, and DNA repair mechanisms. Enhancing our knowledge of insect-metal interactions sounds crucial for the conservation of insect populations in an increasingly metal-dependent world.
Read full abstract