Abdominal organs play a significant role in regulating various functional systems. Any impairment in its functioning can lead to cancerous diseases. Diagnosing these diseases mainly relies on radiologists’ subjective assessment, which varies according to professional abilities and clinical experience. Computer-Aided Diagnosis (CAD) system is designed to assist clinicians in identifying various pathological changes. Hence, automatic pancreas segmentation is a vital input to the CAD system in the diagnosis of cancer at its early stages. Automatic segmentation is achieved through traditional methods like atlas-based and statistical models, and nowadays, it is achieved through artificial intelligence approaches like machine learning and deep learning using various imaging modalities. This study investigates and analyses the various state-of-the-art multi-organ and pancreas segmentation approaches to identify the research gaps and future perspectives for the research community. The objective is achieved by framing the research questions using the PICOC framework and then selecting 140 research articles using a systematic process through the Covidence tool to conclude the answers to the respective questions. The literature search has been conducted on five databases of original studies published from 2003 to 2023. Initially, the literature analysis is presented in terms of publication, and the comparative analysis of the current study is presented with existing review studies. Then, existing studies are analyzed, focusing on semi-automatic and automatic multi-organ segmentation and pancreas segmentation, using various learning methods. Finally, the various critical issues, the research gaps and the future perspectives of segmentation methods based on published evidence are summarized.
Read full abstract