Salinization of originally freshwater rivers by saline springs is a growing threat to availability of water resources in the semiarid region of southern Iran. The problem is further complicated by persistent drought of recent years, which has resulted in prolonged periods of reduced streamflow. This issue has prompted research on possibility of finding practical techniques for flow stoppage of saline springs by investigating their recharge and salinization mechanisms as well as emergence time. To this end, the Shirinrud river in southern Iran is selected as a case study. While this river contains freshwater flow, it is intensively salinized due to annual discharge of ∼110000 tons salt from the Romqan saline spring. Study area streamflow gauges, water sampling, plus field observations and measurements have been used to provide the required data and information. Data analyses included evaluation of temperature variations of study area groundwaters, long-term salinity of the Shirinrud River, and isotopic and hydrochemical compositions of water samples. Results of thermal, isotopic, and hydrochemical tracing methods together with hydrogeological evidences in the Romqan spring site indicated that although the Romqan saline spring is recharging from a fresh groundwater flow, it becomes intensely salinized due to passage of ∼1.7 km of its recharging water pass inside the Romqan salt diapir. Furthermore, sudden drying of a freshwater spring at border of Romqan salt diapir just after the 1999 earthquake in spring site area, resulted in redirection of the fresh groundwater flow of the dried spring into the Romqan salt diapir, followed by emergence of the Romqan saline spring in the Shirinrud River bed. For flow stoppage of the Romqan saline spring, an interceptor drainage system is suggested, which would divert the spring fresh recharging groundwater flow at border of Romqan salt diapir and finally desalinize the Shirinrud River from Romqan saline spring.
Read full abstract